在中国,寒武纪、地平线机器人均为近两年成立的新锐芯片研发企业,拥有该领域的顶尖人才。中星微公司和清华大学也有团队从事前沿研究。“未来所有智能都是从芯片端发起的,而且未来的芯片一定是和云连接在一起的。”语音识别公司云知声公司CEO黄伟认为,芯片安全就是数据安全、云端安全、战略安全,“这也不难判定为什么谷歌砸钱也要弄自己的芯片,不可能让自己的数据在别人的芯片上‘跑’结果。”
不同技术路线图齐头并进
那么我们需要怎么样的芯片来引领人工智能时代呢?魏少军认为,人工智能芯片必须满足几个条件。第一,必须可编程,这样才能适应算法和应用的持续演进;第二,架构的动态可变性和高效的架构变换能力,因为没有一个单一架构的芯片可以适应所有的算法;第三,高计算效率和高能量效率。此外,还必须低成本、体积小,应用开发简便。在人工智能领域,世界范围内的科研人员开创了不同的技术路线,总结起来大概有如下几类:
第一类是基于图形处理器的AI芯片。以英伟达公司的GPU为代表,使用传统的计算机架构,也是目前应用领域最广的计算机芯片。主要被互联网公司采用,优点是成熟,缺点是功耗大。
第二类是专用架构的AI芯片。例如,我国中科院计算机所的寒武纪公司2016年推出了Cambricon-1A,是世界首款商用深度学习专用处理器产品,在运行主流智能算法时性能功耗相对CPU和GPU有数量级优势。
第三类是类脑计算芯片。清华大学类脑计算研究中心主任施路平教授介绍,随着脑认知和神经科学的发展,国内外都意识到智能技术可以从脑科学和神经科学中受到启发,借鉴人脑信息处理方式,发展类脑计算系统。国际上,近年来IBM推出的TrueNorth类脑计算芯片,就属于此类,它处理能力相当于1600万个神经元和2.56亿个神经突触,功耗比现有系统下降多个数量级。在国内,清华大学从2012年开始布局类脑计算研究,于2015年11月成功研制了国内首款超大规模的神经形态类脑计算“天机芯片”。
此外还有其他类型芯片。包括以谷歌的TPU为典型代表的基于刺激驱动的神经计算芯片。魏少军表示,为了克服传统芯片设计的一些局限,他领衔进行了可重构计算研究,团队成员尹首一副教授研究和设计了名为Thinker的芯片,该芯片具有高能效的突出优点,其能量效率相比目前在深度学习中广泛使用的GPU提升了三个数量级。
发展智能芯片需要一个“尖刀连”