按照京东金融的说法,目前,京东金融本身已经是一个庞大的数据源,加上京东商城的数据和投资的一些大数据公司及外部公开数据,京东金融不断扩充数据源,以数据驱动作为金融业务发展的前提。
“相信有很多公司都不同程度地掌握大量的数据源,但数据多和数据有用是两码事,有用的数据要具备大、厚、动三个属性,更重要的是,这些数据只是原材料,要进行各种模型的搭建,之后才能运用到实践中,并形成一整套系统,所以,我们需要有懂得做数据‘原材料’加工的高水平‘厨师’团队。”京东金融副总裁许凌指出,京东金融经过两年多时间,已经搭建了一个专业的数据风控团队。
●路径:细分市场靠垂直化构建征信体系
除了几大巨头,市场上还有为数众多的企业或机构,开始利用既有的数据和技术拓展大数据征信业务。达睿咨询创始人、首席分析师马继华指出,未来,一些专业公司主要在垂直领域发挥作用,为特定行业提供服务。
“维信金科从成立之始,就聚焦在C端的个人信贷业务,虽未正式开展个人征信业务,但具备了根据个人多维度信息(人民银行征信、社保公积金、手机账单、互联网大数据等)评估个人征信情况的能力。”维信金科创始人和CEO廖世宏告诉《每日经济新闻》记者,公司构建了Robot Lending(智能信贷)模式,依靠自主研发的蜂鸟云风控系统(核心是数据采集、反欺诈、拦截、规则、评分、决策、机器学习等八大引擎),实现针对个人智能化的信用评估和风险量化。
廖世宏称,“针对数据保护方面,有一个大前提,维信坚持合法合规的经营,任何的数据源的使用必须通过客户授权或者有资质的第三方授权。以维信与中国电信的合作为例,我们把一个封装好的黑盒子放在中国电信端口,获取一些参数,最后出结果客户接受我们信贷并授权的时候,中国电信才会把这二三十个重要的参数,在做过过滤后给到我们。”
另一个值得一提的案例是企乐汇,其专注的领域是企业征信和防欺诈。“一方面服务集团内部企业经营贷,一方面对外开展场外尽调、征信数据和征信报告等征信服务,已经上线的信用公示台,涵盖了企业的基本信息、信用展示、关联图谱、负面信息和企业活力等信用评价维度,方便用户及时了解目标企业的征信信息。除此之外,积极聚合企业画像数据,从欺诈、还款意愿和还款能力等几方面结合大数据交叉检验的方法评判企业信用状况。”PINTEC集团金融大数据研究中心首席科学家张良贵称。
至于业务开展过程中遇到的问题,廖世宏表示,第一,因为数据的相关性问题,大数据征信仍然存在一定的局限性,无法真正取代央行征信。对此,维信针对征信空白用户,从小额度开始建立信用,并且逐步完善他们的信贷行为数据;第二,由于消费金融服务行业特殊性(平均贷款周期一般在12个月~14个月),数据模型更新需要比较长的时间成本。维信一直在做智能化的信贷系统,通过机器学习引擎,运用一些先行指标,实现模型的实时自动化更迭;第三,非央行的个人征信管理比较无序,希望行业法律能日渐完善。