关键技术是环境感知、智能决策、控制执行、V2X通信、云平台与大数据和信息安全技术。
云平台与大数据技术包括云平台架构与数据交互标准,云操作系统,数据高效存储和检索技术,大数据关联分析和深度挖掘技术等。云端是智能网联汽车的信息枢纽。
1、环境感知技术:环境感知包括车辆本身状态感知、道路感知、行人感知、交通信号感知、交通标识感知、交通状况感知、周围车辆感知等。
其中车辆本身状态感知包括行驶速度、行驶方向、行驶状态、车辆位置等;道路感知包括道路类型检测、道路标线识别、道路状况判断、是否偏离行驶轨迹等;
行人感知主要判断车辆行驶前方是否有行人,包括白天行人识别、夜晚行人识别、被障得物遗挡的行人识别等;
交通信号感知主要是自动识别交又路口的信号灯、如何高效通过交又路口等;
交通标识感知主要是识别道路两侧的各种交通标志,如限速、弯道等,及时提醒驾驶员注意;
交通状况感知主要是检测道路交通拥堵情况、是否发生交通事故等,以便车辆选择通畅的路线行驶;
周围车辆感知主要检测车辆前方、后方、侧方的车辆情况,避免发生碰撞,也包括交叉路口被障碍物遮挡的车辆。
在复杂的路况交通环境下,单一传感器无法完成环境感知的全部,必须整合各种类型的传感器,利用传感器融合技术,使其为智能网联汽车提供更加真实可靠的路况环境信息。
2、无线通信技术:长距离无线通信技术用于提供即时的互联网接入,主要用4G/5G技术,特别是5G技术,有望成为车载长距离无线通信专用技术。短距离通信技术有专用短程通信技术(DSRC)、蓝牙、WiFi等。
其中DSRC重要性较高且亟须发展,它可以实现在特定区域内对高速运动下移动目标的识别和双向通信,例如V2V、V2I双向通信,实时传输图像、语音和数据信息等。
3、车载网络技术:目前汽车上广泛应用的网络有CAN、LIN和MOST总线等,它们的特点是传输速率小、带宽窄。
随着越来越多的高清视频应用进入汽车,如ADAS、360度全景泊车系统和蓝光DVD播放系统等,它们的传输速率和带宽已无法满足需要。
以太网最有可能进入智能网联汽车环境下工作,它采用星形连接架构,每一个设备或每一条链路都可以专享100M带宽,且传输速率达到万兆级。
同时以太网还可以顺应未来汽车行业的发展趋势,即开放性兼容性原则,从面可以很容易地将现有的应用入到新的系统中。
4、先进驾驶辅助技术:先进驾驶辅助技术通过车辆环境感知技术和自组织网络技术对道路、车辆、行人、交通标志、交通信号等进行检测和识别。
对识别信号进行分析处理,传输给执行机构,保障车辆安全行驶。先进驾驶辅助技术是智能网联汽车重点发展的技术,其成熟程度和使用多少代表了智能网联汽车的技术水平,是其他关键技术的具体应用体现。
5、信息融合技术:信息融合技术是指在一定准则下利用计算机技术对多源信息分析和综合以实现不同应用的分类任务而进行的处理过程。
该技术主要用于对多源信息进行采集、传输、分析和综合,将不同数据源在时间和空间上的冗余或互补信息依据某种准则进行组合,产生出完整、准确、及时、有效的综合信息。
智能同联汽车采集和传输的信息种类多、数量大,必须采用信息融合技术才能保障实时性和准确性。