同样以“鹰眼”引擎为例,作为一套区别于传统“人海审核战术”的大数据智能风控系统,可以有效应对线上贷款单数多、单笔金额小、全天候等特征。当用户在乐信的分期乐商城下单后,其互联网电商行为数据、人脸识别、机器指纹验证及外部征信数据等都会自动进入到“鹰眼”引擎中。有了这些大数据,运用机器学习手段,“鹰眼”引擎就能够对该用户的还款能力、还款意愿、负债信息、稳定性等作出评估,并自动完成即时预警、拦截以及分析部署等功能。
更重要的是,用人工智能审核用户和订单,不仅能够提高效率,也能提高审核的准确率。刘华年表示,原因在于,一方面,机器可以处理海量数据,不受感情影响,也不会感到疲劳,能够降低人为造成的审核失误;另一方面,机器能发现审核专家可能都无法发现的高危情况。举例来说,当一个正常用户下单时,其浏览页面时长、下单间隔等会呈现出不规则特点;而如果一个用户下单时出现“离群特征”(比如规律性下单),这部分用户就属于“高危用户”。这种“离群特征”凭借审核员肉眼往往很难发现,只有通过机器学习,经过大量的计算分析才能做到。
风险防控是未来
为确保每一位用户的账户安全,保护所有客户资金的安全,风险防控被看作未来金融业应用人工智能的一个核心落脚点
在不少业内人士看来,风险防控将是未来金融业应用人工智能的一个核心落脚点。“从登录环节开始,京东金融就开始见微知著。”沈晓春以账户登录场景的风险管理为例介绍,为确保每一位用户的账户安全,京东金融建立了包括设备识别、人机识别、生物识别3大技术以及异常登录模型和账户等级模型在内的全方位账户安全体系,用于判断当前登录是否产生风险、判断当前用户行为偏好等。
以设备识别为例,“我们在这项技术的应用上,会有前后两个模块同时推进。比如,在最前端的客户登录中,我们就能够精确识别客户的设备,通过相应技术手段来采集客户的设备环境,帮助生成客户识别的ID;在后端则通过机器学习等计算方法实现设备精准核算和判定,从而达到更好的风险控制和体验的增强。”沈晓春表示。
从人机识别角度上也是类似的逻辑,在账户登录的场景下,一般会遇到大批量的外部攻击。攻击过程中,如何做到在第一时间对它进行截断,并且保护所有客户的资金安全呢?沈晓春表示,对此,京东金融自主研发了整体的人机识别体系,它从6个维度对一次实际登录行为进行不同维度的判定。比如在手机端,通过手摁在屏幕上的力度来判定是不是本人;在PC端,则通过评估鼠标的轨迹是否规整,来判断是否真正遇到恶意攻击。
谈到异常登录模型,沈晓春表示,京东金融的账户安全模型是由多层架构组成,异常登录模型就是接近于顶层架构的分类模型。据介绍,京东金融异常登录模型结合了前端收集的设备特征编码、生物信息ID与历史数据规律,在京东金融在线算法系统支持下,可以在毫秒级时间内就完成数百项数据的特征加工与模型计算,是用于保护用户安全的核心模型。
可见,借助人工智能,金融行业的发展日新月异。但作为一个新兴学科,人工智能的应用领域有限,在金融领域的应用也处于起步阶段。“金融人工智能在跨学科复合型人才、研发实力、资金投入、数据积累等方面要求都比较高,能够熟练应用相关技术的企业还不是很多。”周治翰表示,不过,一项技术都有一个从起步到推广,再到成熟、普及的过程,随着技术的成熟,应用成本可能也会逐步降低。相信人工智能未来在金融领域会有更广泛的应用。