如何把制备好的两个纠缠粒子分别发送到相距很远的两个点?中科院上海技术物理研究所研究员、量子科学实验卫星工程常务副总师、卫星系统总指挥王建宇介绍,“墨子号”卫星过境时,同时与青海德令哈站和云南丽江高美古站两个地面站建立光链路,卫星上的纠缠源载荷每秒产生800万个纠缠光子对,光链路以每秒1对的速度在地面超过1200公里的两个站之间建立量子纠缠。
“高精度的实验技术保证了两地的独立测量时间间隔足够小,结果以99.9%的置信度在千公里距离上验证了量子力学的正确性,实现了严格满足‘爱因斯坦定域性条件’的量子力学非定域性检验。”潘建伟称。
这意味着什么?一句话,即便相距千里之遥,量子纠缠效应依然有效。
实用化进程再提速
13公里、16公里、百公里,“咬住青山不放松”,他们不断扩展量子纠缠分发的距离,并向新目标努力奔跑
当然,除了验证量子力学非定域性的存在,此番量子纠缠成功跨越千里,更重要的意义在于将量子通信实用化进程又向前推进了一大步。
“利用量子纠缠所建立的量子信道,是构建量子信息处理网络的基本单元,而要构建广域的量子网络,第一步就是要实现远距离的量子纠缠分发。”潘建伟解释。
理想很丰满,现实很骨感。由于量子纠缠非常脆弱,其在远距离光纤传输中,一来损耗过大,二来与环境的耦合会使纠缠品质大大下降;在近地传输过程中,还会受到地面障碍物、地表曲率等影响。受种种因素限制,此前国内外地面实验的量子纠缠分发距离一直停留在百公里量级。
如何有效扩展量子纠缠分发的距离?理论上有两种途径。一种是利用量子中继,但目前由于受到量子存储寿命和读出效率等因素的严重制约,无法实际应用于远程量子纠缠分发。另一种则是利用卫星向地面分发。
“相比光纤,星地间的自由空间信道损耗小,结合卫星的帮助,可以在全球尺度上实现超远距离的量子纠缠分发。”2003年,潘建伟团队提出利用卫星实现远距离量子纠缠分发的方案。13公里、16公里、百公里,“咬住青山不放松”,他们不断扩展量子纠缠分发的距离,并向新目标努力奔跑。2016年8月16日,“墨子号”成功发射,卫星的科学任务之一即是双向星地量子纠缠分发。
“这是世界上第一次实现千公里量级的量子纠缠。”根据潘建伟的测算,实验中,量子纠缠的传输衰减仅仅是同样长度地面光纤最低损耗的一万亿分之一。而即便选用超低损耗光纤,将一对光子分发到千公里以外也得需要3万年的时间。“这就完全丧失了通信的意义。”潘建伟说。